

Panel Session on Frequency Lowering Technology

Panel chair:

Panel members:

Susan Scollie

Jace Wolfe

Andrea Bohnert

Danielle Glista

Michael Boretzki

Clinical rationale for frequency lowering:

Bandwidth matters:

- Children need access to the high frequency sounds of speech, to understand and monitor:
 - See: Moeller et al, 2007, a review article by Stelmachowicz et al (2004), previous proceedings from this meeting, and this conference's presentation by Andrea Pittman.

• But:

If audibility cannot be provided via the available bandwidth and gain/output, is it beneficial to lower the cues to an audible frequency range?

Bandwidth limitations in current-era devices:

Frequency Lowering (FL): two types

- Frequency Compression (FC)
 - E.g.: PhonakSoundRecover
- Frequency Transposition (FT)
 - E.g.: WidexAudibilityExtender
- Review: Simpson (2009),
 Trends in Amplification

Frequency Lowering (FL): two types

- Frequency Compression (FC)
 - E.g.: PhonakSoundRecover
- Frequency Transposition (FT)
 - E.g.: WidexAudibilityExtender
- Review: Simpson (2009),
 Trends in Amplification

Some studies of frequency lowering:

(other studies have been done in adults, plus other non-peer reviewed in kids)

- FC in children:
 - Glista et al., 2009a
 - FC improves detection/recognition (group vs individual)
 - Significant candidacy factors (hearing loss, age group)
- FT (various types) in children:
 - Miller-Hansen et al, 2003, MacArdle et al, 2001
 - FT improves detection & recognition (group vs individual)
 - Auriemmo et al, 2009
 - FT + training improved consonant recognition (other outcomes)
 - Smith et al, 2009
 - FT improved consonant recognition

Efficacy? Experimental design factors...

Baseline

- FC should be compared to the best possible fitting.
- Does this change over time as the fittable bandwidth extends? Candidacy?

Aid

- FC is best evaluated within-devices.
- Allows us to hold all other device variables constant.

Fitting

- FC settings should be appropriate to the individual.
- Optimal settings are not yet known, but fitting, tuning, and verification are possible.

Time

- An acclimatization period may be necessary.
- What does this mean for studies comparing FL strategies?

Measures

- As with all hearing aid research, blinding is needed for subjective measures.
- Sensitive tests are needed but may not test all speech sounds – a test battery?

Fitting Method (pediatric):

1) Provide more audibility of high frequency cues than is possible with a well-fitted device. The frequency response is based on DSL5 child.

2) We verify using measures that show us audibility of specific high frequency speech bands (see Glista & Scollie, AudiologyOnline 2009)

UWO, and Hearts for Hearing, and University Mainz are all following this method.

Verifit "Speech Bands" with/without:

Today's panel:

- Jace Wolfe, Oklahoma, USA:
 Evaluation of FC for moderate hearing losses.
- Andrea Bonhert, Mainz, Germany:
 Evaluation of FC for moderate to profound losses.
- Danielle Glista, London, Canada:
 Do children need an acclimatization period after FC fitting?
- Michael Boretzki, Staefa, Switerland: Future directions in evaluating SoundRecover.

Evaluation of frequency compression for moderate hearing losses

Audiologists

Jace Wolfe, Ph.D., CCC-A Kimberly Fox, AuD., CCC-A Heather Kasulis, AuD, CCC-A
Brooke Shoemaker, Au.D., CCC-A

Speech-Language Pathologists

Joanna T. Smith, M.S., CCC-SLP, LSLS Cert. AVT Teresa H. Caraway, Ph.D., CCC-SLP, LSLS Cert. AVT Wendy DeMoss, M.S., CCC-SLP, LSLS Cert. AVT Tamara Elder, M.S. CCC-SLP, LSLS Cert. AVT Darcy Stowe, M.S. CCC-SLP, LSLS Cert. AVT Natalie O'Halloran, M.S. CCC-SLP, LSLS Cert. AVT Lindsay Steuart, M.S., CCC-SLP, LSLS Cert. AVT Krissa Cummins, M.S., CCC-SLP

Support Staff

Kris Taylor
Pati Burns
Kristy Murphy

June Cashion
Susan LeFleuer
Megan Miller

Kerri Brumley
Sherry Edwards
Katie Edwards

What about children with moderate hearing loss?

- Stelmachowicz and colleagues (2000, 2001, 2002, 2004) have shown that children with moderate to moderately severe SNHL need a wider bandwidth for optimal speech recognition.
- Young children with moderate to moderately severe SNHL show delays in fricative production (Moeller et al., 2007; Stelmachowicz et al, 2004).
- Children with access to high-frequency information (i.e., >4K
 Hz) demonstrate better short-term word learning (Pittman, 2008).

Study Objectives

 Does non-linear frequency compression (SoundRecover in the Nios hearing aid) improve speech recognition for children with moderate SNHL?

 Does non-linear frequency compression (SoundRecover in the Nios hearing aid) improve speech production for children with moderate SNHL?

Methods

 18 children with moderate to moderately severe high-frequency SNHL fitted with Phonak Nios micro-sized behind-the-ear hearing aids.

Today, we will be reporting on results for 15 children.

Mean Audiogram

Subject Characteristics

- Full-time users of digital behind-the-ear hearing aids.
- No ANSD
- No previous experience with frequency lowering technology
- Oral-Aural communicators with English as primary language
- 5-13 years of age (Mean Age: 10 years, 6 mths)

Procedures

- Measured unaided audiometric thresholds with insert earphones coupled to foam eartips.
- Measured RECD with same foam eartip.
- Used Audioscan Verifit to calculate threshold at TM in dB SPL.
- Fit hearing aid to appropriate earmold.
- Entered thresholds (dB HL) into Phonak iPFG fitting software.

Step 1: Fit to target without frequency compression

Step 2: Ensure that high-frequency sounds are audible

Procedures

- Evaluated speech production, speech recognition, and aided thresholds with subjects' own hearing aids and Phonak Nios BTE hearing aids.
- Subjects wore Phonak Nios BTE hearing aids for two 6-week periods:
 - NLFC Off
 - NLFC On
- Order in which NLFC was used was counter-balanced across subjects.
- After completion of the two 6-week trials, the subjects wore the hearing aids with NLFC enabled for 6 months.

Procedures

- Aided Thresholds
 - 4000, 6000, & 8000 Hz
 - Recorded /sh/ & /s/, Univ Western Ontario

- Speech Recognition
 - University of Western Ontario Plural Test
 - Phonak Logatome Test
 - BKB-SIN

Aided Thresholds (dB HL) NLFC Off vs. NLFC On

UWO Plural Test NLFC Off vs. NLFC On

Wolfe et al. (in press), J Am Acad of Audiol

lel Session on Frequency Lowering

Speech Recognition Threshold (dB SPL) for 7 VCV Tokens

Speech Recognition in Noise NLFC Off vs NLFC On

Logatome Thresholds

Speech Recognition in Noise on BKB-SIN

Jax

13-year old boy

 Congenital hearing loss of unknown etiology

- Previously wore Perseo
 211 Behind-the-Ear
 hearing aids
- Excels in typical classroom placement

Summary

- NLFC improves speech recognition and speech production for children with moderate hearing loss.
- Research needed to examine pros and cons of mild losses!
- Verification is key
 - Probe microphone measures with calibrated stimuli designed for verification of frequency lowering hearing aids or with live voice stimuli (/sh/, /s/).
 - Ensure adequate sound quality
 - Aided speech recognition
- Remember earmold acoustics!
- Children may need to acclimate
 - May require time to develop speech recognition and production.

Acknowledgements

- Susan Scollie, Ph.D. & Danielle Glista, M.Sc., University of Western Ontario
- Teresa Carway, Ph.D., SLP, LSLS, Hearts for Hearing
- Andrew John, Ph.D., University of Oklahoma Health Sciences Center
- Erin Schafer, Ph.D., University of North Texas
- Myriel Nyffeler, Ph.D., Michael Boretzki, Ph.D., and Christine Jones, Au.D., Phonak

Evaluation of frequency compression for moderate to profound hearing losses

Andrea Bohnert

University Medical Center of the Johannes Gutenberg-University Mainz

Department for Oto-Rhino-Laryngology,
Division for Communication Disorders

Children with a severe to profound loss:

- Can we demonstrate speech recognition benefits?
- In quiet as well as in noise conditions?
- Can articulation be improved?
 Which configurations of hearing loss will benefit....
 - Steep or flat losses???

Clinical field trial

- 4 female, 9 male
 (6 15 years)
- Average age: 10,5 years
- All experienced HA users
- Fitted on DSL basis with high-quality HA
- 4 main stream school
- 9 school for HI

Audiogram right / left

Study - Group results - GII T1 vs T5

6

Study - Group results - GII T1 vs T5

Study – Group results – AAST Spondee in quiet

Study – Group results – AAST Spondee in quiet

Study – Group results – AAST Spondee in noise

Two examples...

Sub A steep loss

10 y, good speech development
Own HI = Eleva 411

Sub B flat loss

8 y, good speech development Own HI = Siemens Artis P

Two examples... Sub A steep loss

Two examples... Sub B flat loss

Case Studies

Speech Scores open and closed sets Subj A Subj B

Open set words	Trad HA	Freq Comp T2	Freq Comp T5
55 dB	30 %	50 %	60%
65 dB	60%	70 %	90%
Closed set quiet 65 dB SRT	36 dB	32 dB	27 dB
Closed set noise 65 dB SNR	2 dB	-5 dB	-3,5 dB

Open set words	Trad HA	Freq Comp T2	Freq Comp T5
55 dB	0 %	0 %	40%
65 dB	10 %	40%	70%
Closed set quiet 65 dB SRT	56 dB	42 dB	42 dB
Closed set noise 65 dB SNR	9 dB	7,7 dB	3 dB

Case studies:

Subject A

Hears new sounds, birds etc.

More relaxed after school

Rather relaxed facial expression

Trivial sounds are recognized earlier

TV set to normal volume

Speaks with clearer voice – more self confident

Subject B

Teacher can be heard with less effort

More relaxed after school

Audio books can be heard with normal volume

More open-minded – takes part in holiday camps with 50 children

Does not accept everything in conversation, but argues

Summary

- Good spontaneous acceptance for all kids
- Kids can hear many new sounds (birds, bells etc.)
- Improved communication
- More activities after school
- Families judge children's speech as clearer and more precise

Clinical implications - future questions....?

- ✓ Viable and robust technology for profound hearing losses
- ✓ It does need to be individually fitted

We still need to learn more......for example:

- Cochlear implant candidacy
- Asymmetrical hearing loss
- Auditory neuropathy disorders
- Bimodal fittings

Clinical implications – future questions?

- ✓ Test results maybe not always consistent
- ✓ Do we have the right tests to show all effects of modern technology?

We should always listen to our children.....

Acknowledgements...

Clinic-Team University, Mainz

Sabine Müller, Petra Brantzen, Martina Dammeyer,

Bianka Schramm, Prof. Annerose Keilmann

Audiology-Team Phonak, Stäfa

Dr. Myriel Nyffeler, Kai Hessefort, Steffi Kalis

and to all children!

Do children need an acclimatization period?

Danielle Glista, Ph.D.

Child Amplification Laboratory National Centre for Audiology, University of Western Ontario

Acknowledgements

This work was supported by:

Canadian Institutes of Health Research, Masons Help-2-Hear Foundation and Phonak AG

Special thanks to:

Susan Scollie, Richard Seewald, Meg Cheesman, David Purcell and Jacob Sulkers for their contributions

What is auditory acclimatization?

New acoustic information

Time to acclimatize

Example: new audibility of speech cues post hearing aid fitting

Systematic change in auditory performance

From the Eriksholm workshop on Auditory Deprivation and Acclimatization (Arlinger et al., 1996)

Why study auditory acclimatization?

- Work by Stuart Gatehouse and the Eriksholm Workshop on Auditory Deprivation and Acclimatization (1995):
 - Auditory acclimatization is a real phenomenon with important research/clinical implications
 - Evidence suggests the mean reported improvement in benefit over times ranges from 0 to 10% (across speech materials and presentation conditions)

(Arlinger et al., 1996)

Why study auditory acclimatization?

- Previous research on nonlinear frequency compression (FC) and speech perception benefit suggests:
 - Considerable performance variability at the level of the individual - adult and child data (Simpson, 2009)
 - Pediatric pilot data provides informal evidence of an acclimatization effect for some listeners (Glista et al, 2009)
- As with all fittings involving new, complex signal processing, adaptation time becomes important

Study design

Study Phase	Structure/Objective	
Baseline Phase (No FC)	Real-world usage DSL v5.0 with adjustments to preference	
	2 - 3 testing sessions Stopping criterion: Asymptotic performance Goal: Minimize practice effects and/or acclimatization effects from previous fitting	
Treatment Phase (with FC)	4 testing sessions, spaced 2 weeks apart + 2 monthly testing sessions Goal: Track time course/magnitude of an acclimatization effect	
Withdrawal Phase (No FC)	1 testing session FC disabled in lab only Goal: Establish FC effect post-acclimatization	

Case Study

- 11 years of age
- Exposure to ototoxic medication
- Long-term, fulltime HA user
- Suspected dead regions
 (TEN test: Moore, Glasberg & Stone, 2004)

Fitting details

- Study worn aids = Naida IX SP, SoundRecover setting = 1600 Hz cut-off, 4:1 ratio
- DSL v5.0, FC setting individualized (refer to AudiologyOnline: Glista & Scollie, 2009)

Results – Speech recognition: Plurality

Results – Speech recognition: Plurality

Results – Speech recognition: Consonants

DFD Test (Cheesman & Jamieson, 1996)

Results – Speech recognition: Consonants

Results – Discrimination of /s/ vs. /]/

Results – Discrimination of /s/ vs. /ʃ/

Results – Detection of /s/ and /ʃ/

Results – Detection of /s/ and /]/

Clinical implications

- Overall, significant speech perception benefit was reported with FC compared to without FC
- Acclimatization trends with FC:
 - Benefit change ranged from 0 to 17%, across measures
 - Significant acclimatization trends were observed after approximately 6 weeks or longer
 - Two unique acclimatization patterns where exemplified:
 - Gradual improvement over time
 - Improvement after a specific period of acclimatization (S-shaped curve)
- Further cases are currently under analysis

Clinical implications

 Speech perception testing administered on more than one appointment, and after allowing a period of acclimatization can assist in validating FC benefit

Thank you for listening

Future directions in evaluating SoundRecover

Michael Boretzki, Ph.D.

Program manager R&T projects – Audiology and fitting methods

Phonak AG

Co-authors:
Nicola Schmitt
Andrea Kegel
Harald Krueger
Julia Rehmann
Frederik Eichhorn
Katrin Meisenbacher
Juliane Raether

Overview

- 1. Background and goals
- 2. Design and development
- 3. Prototype evaluation
- 4. Test revision
- 5. Future directions

Goals in Development of the Logatome test

Development Goals:

- 1)We wanted a computer-based test with high sensitivity and specificity to high frequency phoneme intelligibility!
- 2) We wanted a language-neutral test!
- 3) We wanted a test that would be applicable with mild-to-moderate hearing losses!

Application Goals:

- 1)Suitable for comparison of different hearing aids,
- 2) Suitable for evaluation of different settings of a hearing aid
 - For example, frequency compression on versus off

What does *Logatome* mean?

"A **logatome** is an artificial word of one or more syllables which obeys all the phonotactic rules of a language but has no meaning. Examples of English logatomes would be the nonsense words *snarp* or *bluck*." from: Wikipedia

In our test, all of the Logatomes are /aCa/:

For example: Asa, ata, asha

Test construction: What are we measuring?

Test construction: What are we measuring?

Is the Logatome test sensitive to Frequency compression?

n=12 adult subjects with mild hearing loss

Boretzki, M.; Kegel, A. (2009). The benefits of nonlinear frequency compression for people with mild hearing loss. Audiology Online, November 2009

Logatome Test Design: Factors Evaluated

- 1) Minimize phoneme predictability!
- 2) Minimize non-consonant cues!
- 3) Challenge high frequency hearing loss!
- 4) Minimize floor and ceiling effects!
- Maximize valid responses!
- 6) Improve consistency! (revised test)

Goals 1 and 2: Reduce confounds

- Goal 1: Minimize phoneme predictability!
 - By using logatomes (asa, asha, afa) we can reduce guessing from context.
- Goal 2: Minimize non-consonant cues!
 - Embed "asa", "asha" etc. in <u>identical</u> vowels, we can prevent guessing from vowel cues.

Goal 3: Challenge high frequency hearing loss!

- Unvoiced fricatives from a female talker
- Created /s/ at both 6 and 9 kHz

Goal 4: Minimize floor and ceiling effects!

- We use an adaptive tracking procedure to measure the levels needed for understanding
- The score:
 - ➤ Is not a speech <u>detection</u> threshold
 - ➤ Is a speech <u>recognition</u> threshold, in dB(A) per consonant.

Trials \rightarrow

Goal 5: Maximize valid responses!

- Un-forced choice procedure reduces guessed answers
- Listeners can indicate that they don't know
- Listeners can repeat a trial

Goal 5: Improve consistency

- Providing repetitions of each sound improved consistency by 0 to 4 dB per Logatome:
 - "asa, asa, asa" rather than just "asa".
 - Near threshold, <u>repeated stimuli may sound different</u>

Click here if the 3 sounds are not all the same, <u>or</u> if the sounds are too soft to be heard.

The software will increase the test level automatically.

Goal 5: Improve consistency

- Carefully selecting the set of Logatomes:
 - Including a <u>wide range of sounds</u> improves consistency
 - Our final set for clinical use includes six Logatomes, 3 to 9 kHz region:

Goal 5: Improve consistency

Evaluate across languages:

- This testing will continue, early results shown for 25 listeners with NH
- 10 German, 6 English, 9 Thai native speakers
- Logatomes that vary by language (e.g., aka) excluded (final set circled)

Development of a Clinical Logatome Test: Order of Tasks

Development of a Clinical Logatome Test: RESPONSE SCREEN

Summary and Future Directions

- 1) Goal: To develop a language-neutral intelligibility test that is sensitive and specific to high frequency phoneme intelligibility
- **2) Method:** Female talker, unforced choice, non-consonant cues mimimized, adaptive SRT measurement for each stimulus, multiple presentation
 - This method may be challenging for listeners with profound losses
- 3) Validation studies: Appears sensitive to the effects of frequency compression in mild and moderate hearing losses, other evaluations are in progress (normative data, data across losses & languages)
- 4) Adaptation for use with children: A next step Feedback?

Thanks for your attention!

Selected References for panel session:

- Boretzki, M., Kegel, A. 2009. The benefits of nonlinear frequency compression for people with mild hearing loss. Audiology Online, November.
- Glista D, Scollie S. 2009. Modified verification approaches for frequency lowering devices. Audiology Online, November.
- Glista, D., Scollie, S., Bagatto, M., Seewald, R., Parsa, V., Johnson, A. 2009a. Evaluation of nonlinear frequency compression: Clinical outcomes. International Journal of Audiology, Vol. 48, No. 9, Pages 632-644.
- Glista, D., Scollie, S., Polonenko, M. and Sulkers, J. 2009b. A Comparison of Performance in Children with Nonlinear Frequency Compression Systems. Hearing Review, November.
- MacArdle, B. M., West, C., Bradley, J., Worth, S., Mackenzie, J., and Bellman, S. C. 2001. A study of the application of a frequency transposition hearing system in children. British Journal of Audiology 35: 17-29.
- Miller-Hansen, D. R., Nelson, P. B., Widen, J. E., and Simon, S. D. 2003. Evaluating the benefit of speech recoding hearing aids in children. American Journal of Audiology 12(2): 106-113.
- Moeller, M. P., Hoover, B., Putman, C., Arbataitis, K., Bohnenkamp, G., Peterson, B., et al. 2007. Vocalizations of infants with hearing loss compared with infants with normal hearing: Part I--phonetic development. Ear and Hearing, 28(5), 605-627.
- Pittman, A. 2008. Short-Term Word-Learning Rate in Children With Normal Hearing and Children With Hearing Loss in Limited and Extended High-Frequency Bandwidths. Journal of Speech, Language, and Hearing Research Vol.51 785-797.
- Stelmachowicz, P. G., Pittman, A. L., Hoover, B. M., Lewis, D. E., and Moeller, M. P. 2004. The importance of high-frequency audibility in the speech and language development of children with hearing loss. Archives of Otolaryngology Head and Neck Surgery 130(5): 556-562.
- Wolfe, J., John, A., Schafer, E., and Caraway, T. (in press). Evaluation of non-linear frequency compression for children with moderate hearing loss. Journal of the American Academy of Audiology.

Time for discussion (15 minutes)

